Evolving interfaces via gradients of geometry-dependent interior Poisson problems: application to tumor growth
نویسندگان
چکیده
We develop an algorithm for the evolution of interfaces whose normal velocity is given by the normal derivative of a solution to an interior Poisson equation with curvature-dependent boundary conditions. We improve upon existing techniques and develop new finite difference, ghost fluid/level set methods to attain full second-order accuracy for the first time in the context of a fully coupled, nonlinear moving boundary problem with geometric boundary conditions (curvature). The algorithm is capable of describing complex morphologies, including pinchoff and merger of interfaces. Our new methods include a robust, high-order boundary condition-capturing Poisson solver tailored to the interior problem, improved discretizations of the normal vector and curvature, a new technique for extending variables beyond the zero level set, a new orthogonal velocity extension technique that is both faster and more accurate than traditional PDE-based approaches, and a new application of Gaussian filter technology ordinarily associated with image processing. While our discussion focuses on two-dimensional problems, the techniques presented can be readily extended to three dimensions. We apply our techniques to a model for tumor growth and present several 2D simulations. Our algorithm is validated by comparison to an exact solution, by resolution studies, and by comparison to the results of a spectrally accurate method boundary integral method (BIM). We go beyond morphologies that can be described by the BIM and present accurate simulations of complex, evolving tumor morphologies that demonstrate the repeated encapsulation of healthy tissue in the primary tumor domain – an effect seen in the growth of real tumors. 2004 Elsevier Inc. All rights reserved.
منابع مشابه
Extensions to Study Electrochemical Interfaces - A Contribution to the Theory of Ions
In the present study an alternative model allows the extension of the Debye-Hückel Theory (DHT) considering time dependence explicitly. From the Electro-Quasistatic approach (EQS) done in earlier studies time dependent potentials are suitable to describe several phenomena especially conducting media as well as the behaviour of charged particles in arbitrary solutions acting as electrolytes. Thi...
متن کاملAn algebraic calculation method for describing time-dependent processes in electrochemistry – Expansion of existing procedures
In this paper an alternative model allowing the extension of the Debye-Hückel Theory (DHT) considering time dependence explicitly is presented. From the Electro-Quasistatic approach (EQS) introduced in earlier studies time dependent potentials are suitable to describe several phenomena especially conducting media as well as the behaviour of charged particles (ions) in electrolytes. This leads t...
متن کاملA New Ghost Cell/Level Set Method for Moving Boundary Problems: Application to Tumor Growth
In this paper, we present a ghost cell/level set method for the evolution of interfaces whose normal velocity depend upon the solutions of linear and nonlinear quasi-steady reaction-diffusion equations with curvature-dependent boundary conditions. Our technique includes a ghost cell method that accurately discretizes normal derivative jump boundary conditions without smearing jumps in the tange...
متن کاملA Boundary Elements and Particular Integrals Implementation for Thermoelastic Stress Analysis
A formulation and an implementation of two-dimensional Boundary Element Method (BEM) analysis for steady state, uncoupled thermoelastic problems is presented. This approach differs from other treatments of thermal loads in BEM analysis in which the domain integrals due to the thermal gradients are to be incorporated in the analysis via particular-integrals. Thus unlike Finite Elements or Field ...
متن کاملEffects of Enoxaparin Emulsion on Dimethylbenzanthracene-induced Breast Cancer in Female Rats
Background : Enoxaparin is an anticoagulant medication. Anticoagulation inhibits tumor cell–mediated release of angiogenic proteins and diminishes angiogenic response. Angiogenesis is an important event in various cancers such as breast cancer. Angiogenesis provide oxygen and nutrients to tumor cells and causes tumor progression. The aim of the present study was to evaluate the anti-angio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004